
Volume 1 Issue 1 International Journal of Scientific Inventions and Innovations

July 2016

Intellectual Scientific Research Initiative

Evaluation of Crossover operators performance in Genetic Algorithms

S. Preethi Saroj

Department of CSE,PSG College Of Technology,Coimbatore-04

Abstract— Genetic Algorithms are implemented in search and optimization techniques that were developed based on

ideas and techniques from genetic and evolutionary theory. Beginning with a random population of chromosomes, a

genetic algorithm chooses parents from which to generate offspring using operations like selection, crossover and

mutation. Here, comparisons of 5 crossover operators that are used in genetic algorithms are performed. In performance

of a genetic algorithm, crossover operator has an invaluable role. It is necessary to understand the role of the crossover

operator. The purpose of this project is to compare larger set of crossover operators on the same test functions and

evaluate their efficiency. It also includes evaluation of statistical tests in order to study the performance of the crossover

operator.

1. INTRODUCTION

A genetic algorithm (or GA) is a search technique used to find true or approximate solutions to

optimization and search problems. Genetic algorithms are categorized as global search heuristics.

Genetic algorithms are a particular class of evolutionary algorithms that use techniques inspired by

evolutionary biology such as inheritance, mutation, selection, and crossover. The evolution usually

starts from a population of randomly generated individuals. In each generation, the fitness of every

individual in the population is evaluated, multiple individuals are selected from the current population

(based on their fitness), and modified to form a new population. The new population is then used in

the next iteration of the algorithm. Commonly, the algorithm terminates when either a maximum

number of generations has been produced, or a satisfactory fitness level has been reached for the

population.

1.1. Initialization

Initially many individual solutions are randomly generated to form an initial population. The

population size depends on the nature of the problem, but typically contains several hundreds or

thousands of possible solutions. Traditionally, the population is generated randomly, covering the

entire range of possible solutions. Occasionally, the solutions may be "seeded" in areas where optimal

solutions are likely to be found.

1.2. Steps Involved in Genetic Algorithm

 Preethi Saroj. S

9

1.3. Selection

During each successive generation, a proportion of the existing population is selected to breed a new

generation. Individual solutions are selected through a fitness-based process, where fitter solutions (as

measured by a fitness function) are typically more likely to be selected. Certain selection methods rate

the fitness of each solution and preferentially select the best solutions. Other methods rate only a

random sample of the population, as this process may be very time-consuming. Most functions are

stochastic and designed so that a small proportion of less fit solutions are selected. This helps keep the

diversity of the population large, preventing premature convergence on poor solutions. Popular and

well-studied selection methods include roulette wheel selection and tournament selection. In roulette

wheel selection, individuals are given a probability of being selected that is directly proportionate to

their fitness. Two individuals are then chosen randomly based on these probabilities and produce

offspring.

1.4. Crossover

In genetic algorithm crossover is a genetic operator used to vary the programming of a chromosome

or chromosomes from one generation to the next. Cross over is a process of taking more than one

parent solutions and producing a child solution from them.

1.5. Mutation

After selection and crossover, a new population is obtained. Some are directly copied, and others are

produced by crossover. In order to ensure that the individuals are not all exactly the same, mutation

is performed. Mutation is, however, vital to ensuring genetic diversity within the population.

Mutation occurs during evolution according to a user-definable mutation probability. This

probability should be set low. If it is set too high, the search will turn into a primitive random search.

1.6. Termination

This generational process is repeated until a termination condition has been reached. Common

terminating conditions are:

 A solution is found that satisfies minimum criteria

 Fixed number of generations reached

 Allocated budget (computation time/money) reached

 The highest ranking solution's fitness is reaching or has reached a plateau such that successive

iterations no longer produce better results

 Manual inspection

 Any Combinations of the above

2. CROSS OVER

 In the previous chapter the steps involved in Genetic algorithm was discussed in brief.Among

those steps cross-over plays a vital role also our project deals with analysis of different crossover

operators. In this chapter we will discuss about the crossover and its types

Crossover is a genetic operator that combines (mates) two chromosomes (parents) to produce a

new chromosome (offspring). The idea behind crossover is that the new chromosome may be better

 Preethi Saroj. S

10

than both of the parents if it takes the best characteristics from each of the parents. Crossover occurs

during evolution according to a user-definable crossover probability.

2.1. Types of Crossover

2.1.1. Single Point Crossover

 A crossover operator that randomly selects a crossover point within a chromosome then

interchanges the two parent chromosomes at this point to produce two new offspring.

Consider the following 2 parents which have been selected for crossover. The “|” symbol

indicates the randomly chosen crossover point.

Parent1:11001|010

Parent2:00100|111

After interchanging the parent chromosomes at the crossover point, the following offspring are

produced:

Offspring1:11001|111

Offspring2:00100|010

2.1.2. Two Point Crossover

A crossover operator that randomly selects two crossover points within a chromosome then

interchanges the two parent chromosomes between these points to produce two new offspring.

Consider the following 2 parents which have been selected for crossover. The “|” symbols indicate

the randomly chosen crossover points.

Parent1:110|010|10

Parent2:001|001|11

After interchanging the parent chromosomes between the crossover points, the following

offspring are produced:

Offspring1:110|001|10

Offspring2:001|010|11

2.1.3. Arithmetic Crossover

A crossover operator that linearly combines two parent chromosome vectors to produce two new

offspring according to the following equations:

Offspring1 = a * Parent1 + (1- a) * Parent2

Offspring2 = (1 – a) * Parent1 + a * Parent2

where a is a random weighting factor (chosen before each crossover operation).

Consider the following 2 parents (each consisting of 4 float genes) which have been selected for

crossover:

Parent 1: (0.3)(1.4)(0.2)(7.4) Parent 2: (0.5)(4.5)(0.1)(5.6)

If a = 0.7, the following two offspring would be produced:

 Preethi Saroj. S

11

Offspring1: (0.36)(2.33)(0.17)(6.86)

Offspring2: (0.402)(2.981)(0.149)(6.842)

2.1.4. Uniform Crossover

 A crossover operator that decides which parent will contribute each of the gene values in the

offspring chromosomes. This allows the parent chromosomes to be mixed at the gene level rather

than the segment level. Consider the following 2 parents which have been selected for crossover:

Parent1:11001010

Parent2:00100111

If the mixing ratio is 0.5, approximately half of the genes in the offspring will come from parent 1

and the other half will come from parent 2. Below is a possible set of offspring after uniform

crossover:

Offspring1: 01001110

Offspring2: 10100011

Note: The subscripts indicate which parent the gene came from.

2.1.5. Reduced Surrogate Crossover

A reduced surrogate crossover operator reduces parent strings to a skeletal form in which only

those bits that differ in two parents are represented. Recombination is then limited only to positions

of bits in reduced surrogates. Single point crossover was used for recombination of skeletal forms of

parents. Single-point crossover operator can produce parents clones, to avoid that reduced surrogate

crossover should be used. If at least one crossover point occurs between the first and last bits in

reduced surrogate, then the offspring will never duplicate the parents. Also, reduced surrogate will

cause that recombination process equally weight the probability of generating each offspring which

can potentially be produced by an operator.

 2.1.6. Heuristic Crossover

A crossover operator that uses the fitness values of the two parent chromosomes to determine the

direction of the search. The offspring are created according to the following equations:

Offspring1= Best Parent + r * (Best Parent – Worst Parent)

Offspring2=Best Parent

where r is a random number between 0 and 1.

2.1.7. Multipoint Crossover

For multi-point crossover, m crossover positions number of variables of an individual, are chosen

at random with no duplicates and sorted in ascending order. Then, the variables between successive

crossover points are exchanged between the two parents to produce two new offspring. The section

between the first variable and the first crossover point is not exchanged between individuals.

Consider the following two individuals with 11 binary variables each:

 Preethi Saroj. S

12

 individual 1 : 0 1 1 1 0 0 1 1 0 1 0

 individual 2 : 1 0 1 0 1 1 0 0 1 0 1

The chosen crossover positions are:

 2 6 10

After crossover the new individuals are created:

offspring 1 : 0 1| 1 0 1 1| 0 1 1 1| 1

offspring 2 : 1 0| 1 1 0 0| 0 0 1 0| 0

2.1.8. Shuffle Crossover

Shuffle crossover is similar to one-point crossover. First, a single crossover position is selected.

Before the variables are exchanged, they are randomly shuffled in both parents. After recombination,

the variables in the offspring are unshuffled in reverse. This removes positional bias as the variables

are randomly reassigned each time crossover is performed. In a way, shuffle crossover is similar to

uniform crossover. Difference is that uniform crossover exchanges bits and not segments like shuffle

crossover. Further, in uniform crossover bits exchanged follow a binary distribution and in shuffle

crossover bits follow uniform distribution, as in single-point crossover.

2.1.9. Crossover Taken for Analysis

1) Single point crossover

2) Double point crossover

3) Uniform crossover

4) Shuffle crossover

5) Multipoint crossover(five points)

3. LITERATURE SURVEY

 In this chapter ,we discuss about some papers which provided us some basic knowledge about

cross-over operators

[1] Wen-Yang Lin,Wen-Yuan Lee,Tzung-Pei Hong,“ Adapting Crossover And Mutation Rates

In Genetic Algorithms”

 Finding optimal crossover or mutation rates vary for different problems and even for different

stages of the genetic process in a problem. The crossover and the mutation rates are adapted

according to the fitness values of the respective off-springs in the next generations. This paper has a

genetic scheme to adapt these rates which significantly improves the performance of GA.This paper

has an intuition to dynamically adjust the operators (cross-over, mutation) applied probability

according to its contribution. This adjustment is made according to the measure of the performance

of each operator. Adjustments are performed as follows:

 CP - measures the overall performance of the cross-over operator within a generation run.

 MP-measures the overall performance of the mutation operator within a generation run.

 Preethi Saroj. S

13

p_c 〖=p〗_c +θ1 if CP > MP

p_c 〖=p〗_c -θ1 if CP < MP

and

p_m 〖=p〗_m +θ1 if CP <MP

p_m 〖=p〗_m-θ1 if CP > MP

 Where,

p_c=crossover probability, p_m=mutation probability

[2] A.E Eiben,CoesH.M.VanKemenade, “Diagonal cross-over in GA for numerical

optimization”

This paper investigates the performance of GA if the numbers of parents are increased. Increase in

number of parents in turn increases the number of crossover points. To measure this fitness value

diagonal cross-over is applied. Multi parent operator creates a new value in the child chromosome

based on two parents that are randomly selected. Accuracy is measured from the best objective

function at the termination since ,all the objective function has a minimum value of zero.

[3] Analysing crossover operators in Evolutionary Algorithms

 In this paper, to analyse the running time of the EAs, they derive the General Markov Cain

Switching Theorem (GMCST).First the running time of the crossover operators is studied then

difference between running time of crossover operators and mutations is studied. Based on that,

strategies are developed. Given a particular EA and a particular problem, define phases of the

optimization process and bound the time consumed in each phase, so that the total time is bounded.

Hence the analysis is done case-by-case. Operators are used no matter what the current solution are.

Operators however are rarely useful all the time. Thus, applying the operators only when necessary

could improve the performance of the EA.

[4] StjepanPicek, Marin Golub, and Domagoj Jakobovic ,”Evaluation of Crossover Operator

Performance In GA With Binary Representation”

 In the previous studies ,the evaluation of crossover operators were made using mean and standard

deviation .This didn’t provide the negligible difference between the cross-over operators. To

visualize these differences this paper undergoes statistical analysis.To implement this statistical

approach, some test functions are taken.For each test functions every cross-over operators are

applied and their performances are measured. Using this performance measure, comparison

(statistically) between the operators are made and the optimum one is selected.

[5] William M.Spears,KennethA.De Jong” An analysis of Multipoint Crossover operator”

 In this paper the efficiency of n-point crossover operator is analysed. It states that increasing the

crossover points may turn into most favourable result that is the best optimal value will be reached

earlier.The motivation is this paper is to extend the theoretical analysis of the cross-over operator to

include multipoint variations and provde better understanding of when and how to exploit their

power.

 Preethi Saroj. S

14

4. SYSTEM ANALYSIS

This chapter discusses about the requirements and feasibility analysis of the project. It helps to

understand the viability of the project as well as basic hardware and software requirements.

4.1. Requirement Analysis

Hardware specifications

Processor : Intel Pentium dual core 1.73 GHz

Hard disk : 80 GB

Memory : 2 GB RAM

Software specifications

OS : Windows XP / Windows 7/8

Browser: : Internet Explorer 9, or Firefox 4.0

Language: : MATLAB

4.2. Feasibility Analysis

 This is done to assess the feasibility of the project. It is used to determine if the software to be

built will meet the scope and requirements of the project.

Technical feasibility

 Technical feasibility analysis addresses the issues of technology used, portability and

performance considerations of the technology chosen and its defects. Use of MATLAB made the

implementation mathematical function easier and enhanced the performance of the project.

Financial Feasibility

 These analyses the cost factor involved with the project. This project does not involve a

considerable cost factor as the supporting software (MATLAB) used are open source and free to

download.

Time Feasibility

 This addresses the main concern whether the project can be completed on time. A detailed time

plan was prepared at the time of analysis and sticking to the schedule of the project was completed

within time.

Resource Feasibility

 This addresses the issue of resources required to implement the project. As far as this project is

concerned there was no problem with the availability and setting up of needed resources.

5. DESIGN AND IMPLEMENTATION

 In this chapter we discuss about in detail about the design used in our project ,the parameter

settings for the experiment, the implementation and analysis part of the project

 Preethi Saroj. S

15

Initially 60 chromosomes are taken, RANK BASED SELECTION is used to select 50% of

chromosomes(30) to perform cross-over operation. In this operation 5 CROSS-OVER OPERATORS

are used by one by one to analyse their performance. The children(30) generated after the cross-over

operation are put to together with their parents(30) and the best 50% chromosomes(30) among the

parent and the children are taken for mutation.The chromosomes before mutation(30) and

chromosomes after mutation(30) are put together and taken as new population for next

generation.And the generations continue until they reach the termination condition.

TABLE 1: SETUP CONDITIONS

Parameters Chosen

Selection
Rank based

selection

Cross-over percentage 50%

Mutation percentage 10%

Dimension of the

chromosome
30

Population size 60

Generations (termination

condition)
100

 Preethi Saroj. S

16

For analysing the performance of the cross-over operators, Genetic algorithm is applied over

some optimization test functions to obtain their optimal solution. These optimization function can be

mapped to some real time applications.The categories of chosen test functions are given below

5.1. Categories of Test Functions

 Unimodal, convex, multidimensional: The set of functions designed for this class are easier to

solve and have one global optimum. These functions can result in poor convergence to global

optimum.

 Multimodal and two dimensional functions with a few local optima: The set of functions

under this class are of medium complexity and are serviceable to functions that have a few local

optima and one global optimum.

 Multimodal and two dimensional with many local optima: The set of functions under this

class are more complex than the previous one as they are applicable to functions with large number

of local optima.

 Multimodal and multidimensional with many local optima: The functions under this set are

more complex compared to the previous ones and are applied to intelligent optimization algorithms

in combination with the previous class. Two dimensional problems are very rare in real world

situations and hence multidimensional multimodal benchmark problems are prevalent in such

situations.

5.2. Test Functions Choosen Based On the Category

De Jong function: It is a simple and a continuous benchmark problem and belongs to the first class

defined above. It is mathematically defined as:

Fig. 1. Graphical representation of Dejong function

 Michalewicz function: Michalewicz function is a mutimodal test function with n! local optima

and the parameter m defines the difficulty of the functions, as the m goes higher the difficulty of the

search increases. It is defined mathematically as:

 Preethi Saroj. S

17

Fig. 2. Graphical representation of Michalewicz function

 Rosenbrock function: It is a unimodal function and is also known as the second function of De

Jong. It is defined as follows:

Fig. 3. Graphical representation of Rosenbrock function

 Schwefel function: Schwefel function is a multimodal separable function. Global optimum for

the function is distant from the next best local optima and hence the function is tricky and can drive

the algorithm in a different search direction. It is defined as:

Fig. 4. Graphical representation of Schwefel function

 Ackley function: Ackley is a multimodal non-separable function. It is widely used for validation

and testing purposes of algorithms. It is mathematically defined as

 Preethi Saroj. S

18

Fig. 5. Graphical representation of Ackley function

TABLE 2: RANGE OF TEST FUNCTIONS

Test

functions
Range

Dejong -5.12 to 5.12

Michalewicz 0 to 3.14

Rosenbrock -2.048 to 2.048

Schwefel -500 to 500

Ackley -32.768 to 32.768

5.3. Implementation

 Initially one of these five functions are taken and chromosomes are generated within the range of

the optimization function.

 Fitness value is calculated for all the chromosomes generated

 By using RANK BASED SELECTION the chromosomes having the best fitness value are

selected to undergo cross-over operation

 cross-over operation is first done using SINGLE-POINT CROSSOVER operator,and the children

are generated.Fitness values for children is also calculated.

 The fitness values of parents and chromosomes are sorted and the best 50% is chosen,the

chromosomes corresponding to the best fitness values are retrieved and taken for mutation.

 Mutation percentage is set. The mutation is done only to some genes in each chromosomes

according to percentage set..

 The chromosomes before mutation and chromosomes after mutation are taken as new population

for next generation.

 For each generation the best fitness value is stored.

 The process continues until 100 generations are reached.

 This complete process are consider as single run ,to near the accurate value many runs are made.

 After completing multiple runs ,for each generation the average of the best fitness values that are

generated in n runs is taken and plotted to analyse the performance of single point cross-over

operator.

 The same function is taken and the process is repeated for DOUBLE-POINT, MULTIPOINT,

SHUFLLE, UNIFORM CROSS-OVER OPERATORS The results are plotted in the same graph so

 Preethi Saroj. S

19

that the cross-over operators can be analysed and the best cross-over operator for this function can be

finalised.

 The same procedure is followed for all test functions, finally the best cross-over operator for each

function is found.

6. EXPERIMENTAL RESULTS

 In this chapter the experimental results of the performance evaluation of cross-over operators are

discussed

6.1. Dejong function

 By our analysis ,Genetic algorithm implementing the cross over operation using multipoint cross-

over operator converges to the best optimal solution for dejong function

Fig. 6. Graph depicting the performance of crossover operators for Dejong function from the generations 0-100

15 20 25 30 35 40 45
20

30

40

50

60

70

80

generations

fi
tn

e
s
s
 v

a
lu

e
s

Dejong FUNCTION

Fig. 7. Graph depicting the efficient performance of multipoint crossover from the generations 15-45

The following graph depicts clearly that multi-point converges to the best optimal solution

55 60 65 70 75 80 85 90 95 100

25

30

35

40

45

50

55

60

65

70

generations

fi
tn

e
s
s
 v

a
lu

e
s

Dejong FUNCTION

 Preethi Saroj. S

20

Fig. 8. Graph depicting the efficient performance of multipoint crossover from the generations 55-100

6.2. Michalewicz function

By our analysis ,Genetic algorithm implementing the cross over operation using multipoint cross-

over operator converges to the best optimal solution for Michalewicz function

Fig. 9. Graph depicting the performance of crossover operators for Michalewicz function from the generations 0-100

The following graph depicts clearly that multi-point converges to the best optimal solution from the

generations 60 to 70

60 65 70 75 80 85

-18

-17.9

-17.8

-17.7

-17.6

-17.5

-17.4

-17.3

generations

fi
tn

e
s
s
 v

a
lu

e
s

Michalewicz FUNCTION

Fig. 10. Graph depicting the efficient performance of multipoint crossover from the generations 60-90

6.3. Rosenbrock function

By our analysis ,Genetic algorithm implementing the cross over operation using multipoint cross-

over operator converges to the best optimal solution for Rosenbrock function

Fig. 11. Graph depicting the performance of crossover operators for Michalewicz function from the generations 0-100

The following graph depicts clearly that multi-point converges to the best optimal solution from the

generations 80 to 100

 Preethi Saroj. S

21

80 85 90 95 100

-1.45

-1.4

-1.35

-1.3

-1.25

-1.2

-1.15

-1.1

x 10
4

generations

fi
tn

e
s
s
 v

a
lu

e
s

Rosenbrock FUNCTION

Fig. 12. Graph depicting the efficient performance of multipoint crossover from the generations 80- 100

6.4. Schwefel function

By our analysis ,Genetic algorithm implementing the cross over operation using multipoint cross-

over operator converges to the best optimal solution for Schwefel function

Fig. 13. Graph depicting the performance of crossover operators for Schwefel function from the generations 0-100

The following graph depicts clearly that multi-point converges to the best optimal solution from the

generations 65 to 100

65 70 75 80 85 90 95

-9500

-9000

-8500

-8000

-7500

-7000

generations

fi
tn

e
s
s
 v

a
lu

e
s

Schwefel FUNCTION

Fig. 14. Graph depicting the efficient performance of multipoint crossover from the generations 65-100

6.5. Ackley function

By our analysis ,Genetic algorithm implementing the cross over operation using multipoint cross-

over operator converges to the best optimal solution for Ackley function

 Preethi Saroj. S

22

Fig. 15. Graph depicting the performance of crossover operators for Ackley function from the generations 0-100

 The following graph depicts clearly that multi-point converges to the best optimal solution from

the generations 65 to 95

75 80 85 90 95

110

120

130

140

150

160

170

180

190

200

generations

fi
tn

e
s
s
 v

a
lu

e
s

Ackley FUNCTION

Fig. 16. Graph depicting the efficient performance of multipoint crossover from the generations 65- 95

From the above graphs it is clear that multipoint(5) crossover gives best optimum solution for all the

specified test functions.So our next section makes a small analysis over the multi -point crossover

operator by slightly varying the number of cross-over points.

6.6. Multi-point cross-over with 3 cross over points:

For ALL THE FIVE FUNCTIONS, when the multi-point crossover with 3 points is implemented

along with the all other cross-overs the optimal solution converged is NOT BETTER than the

multi-point crossover with 5 points. It is proved with following graphs

65 70 75 80 85 90 95 100

20

25

30

35

40

45

50

55

60

65

generations

fi
tn

e
s
s
 v

a
lu

e
s

Dejong FUNCTION

Fig. 17. Graph depicting the performance of multipoint-3 crossover operator for Dejong function

 Preethi Saroj. S

23

20 30 40 50 60 70 80 90 100

-17.9

-17.8

-17.7

-17.6

-17.5

-17.4

-17.3

-17.2

generations

fi
tn

e
s
s
 v

a
lu

e
s

Michalewicz FUNCTION

Fig. 18. Graph depicting the performance of multipoint-3 crossover operator for michalewicz function

60 65 70 75 80 85 90 95 100

-1.45

-1.4

-1.35

-1.3

-1.25

-1.2
x 10

4

generations

fi
tn

e
s
s
 v

a
lu

e
s

Rosenbrock FUNCTION

Fig. 19. Graph depicting the performance of multipoint-3 crossover operator for Rosenbrock function

50 55 60 65 70 75 80 85 90 95 100

-9500

-9000

-8500

-8000

-7500

-7000

-6500

-6000

generations

fi
tn

e
s
s
 v

a
lu

e
s

Schwefel FUNCTION

Fig. 20. Graph depicting the performance of multipoint-3 crossover operator for Schwefel function

60 65 70 75 80 85 90 95 100

100

120

140

160

180

200

220

generations

fit
n
e
ss

 v
a
lu

e
s

Ackley FUNCTION

Fig. 21. Graph depicting the performance of multipoint-3 crossover operator for Ackley function

6.7. Multi-point cross-over with 7 cross over points:

 For ALL THE FIVE FUNCTIONS, when the multi-point crossover with 7 points is implemented

along with the all other cross-overs the optimal solution converged is BETTER than the multi-

point crossover with 5 points.

 It is proved with following graphs

 Preethi Saroj. S

24

65 70 75 80 85 90 95 100

20

30

40

50

60

70

generations

fi
tn

e
s
s
 v

a
lu

e
s

Dejong FUNCTION

Fig. 22. Graph depicting the performance of multipoint-7 crossover operator for Dejong function

40 50 60 70 80 90 100

-17.8

-17.6

-17.4

-17.2

-17

-16.8

generations

fi
tn

e
s
s
 v

a
lu

e
s

Michalewicz FUNCTION

Fig. 23. Graph depicting the performance of multipoint-7 crossover operator for michalewicz function

65 70 75 80 85 90 95 100

-1.5

-1.45

-1.4

-1.35

-1.3

-1.25

-1.2

-1.15

-1.1

-1.05

x 10
4

generations

fi
tn

e
s
s
 v

a
lu

e
s

Rosenbrock FUNCTION

Fig. 24. Graph depicting the performance of multipoint-7 crossover operator for Rosenbrock function

65 70 75 80 85 90 95 100

-10000

-9500

-9000

-8500

-8000

-7500

-7000

-6500

generations

fi
tn

e
s
s
 v

a
lu

e
s

Schwefel FUNCTION

Fig. 25. Graph depicting the performance of multipoint-7 crossover operator for Schwefel function

As the analysis started with performance evaluation of five cross-over operators, multi-point cross-

over with five points proved to be the efficient one. Then to analyze the multi-point with different

number of cross-over points ,the analysis was done on multi-point cross-over with 3 and 7 points. In

which multi-point with 7 cross-over points proved to be efficient and multi-point with 3 cross-over

points proved to be inefficient.

 Preethi Saroj. S

25

92 93 94 95 96 97 98 99 100

100

110

120

130

140

150

160

170

180

190

200

generations

fi
tn

e
s
s
 v

a
lu

e
s

Ackley FUNCTION

Fig. 26. Graph depicting the performance of multipoint-7 crossover operator for Ackley function

7. CONCLUSION

 Thus we have analyzed a few crossover operators by applying them to five test functions. These

test functions can be mapped to real-time optimization applications for which this project result will

be helpful. Though all operators appears in some test runs, multipoint crossover runs for majority of

runs. We conclude that multipoint crossover operator provides better performance rate.

REFERENCES

[1] Wen-Yang Lin,Wen-Yuan Lee,Tzung-Pei Hong,“ Adapting Crossover And Mutation Rates In Genetic Algorithms”,
Journal of Information Science and Engineering, 2003.

[2] A.E Eiben,CoesH.M.VanKemenade, “Diagonal cross-over in GA for numerical optimization”,Journal of Control and
Cybernetics,1997.

[3] “Analysing crossover operators in Evolutionary Algorithms”

[4] StjepanPicek, Marin Golub, and DomagojJakobovic ,”Evaluation of Crossover Operator Performance In GA With
Binary Representation”

[5] William M.Spears,KennethA.De Jong” An analysis of Multipoint Crossover operator”

[6] AnuroopKundur,”Evaluation of firefly algorithm using benchmark functions”

[7] StjepanPicek, Marin Golub,“On the Efficiency of Crossover Operators in Genetic Algorithms with Binary
Representation”

[8] S., N. Sivanandan, S. N. Deepa,” Introduction to Genetic Algorithm”, Springer-Verlag Berlin Heidelberg, 2008.

[9] C. R. Reeves, J. E. Rome, “Genetic Algorithms Principles and Perspectives”, Kluwer Academic Publishers.
Dordrecht, 2003.

[10] T. Kellegoz, B. Toklu, J. Wilson, “Comparing efficiencies of genetic crossover operators for one machine total
weighted tardiness problem,” Applied Mathematics and Computation, 2008.

[11] M. Kaya, “The effects of two new crossover operators on genetic algorithm performance,” Applied Soft Computing,
2011.

[12] P. Stepaj, G. Marin, “Comparison of a crossover operator in binary- coded genetic algorithms,” Wseas Trans. on
Computers, 2010.

[13] C. M, Garci, M. Lozano, F., Herrera, D. Molina, A., M. Sa´nchez, “Global and local real-coded genetic algorithms
based on parent centric crossover operators,” European Journal of Operational Research, 2008.

[14] D. Kusum, T. Manoj, “A new crossover operator for real coded genetic algorithms,” Applied Mathematics and
Computation, 2007.

[15] http://www.mathworks.com/help/toolbox/gads/f6174dfi10.html.

